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Abstract: This paper essentially presents an application, namely a real-time model-based
monitoring system for nuclear plants.  This system is currently being used in two plants in
France.  We describe how we used various AI techniques for building it: a model-based
approach, a logical model of its operation, a declarative implementation of these models, and
original knowledge-compiling techniques for automatically generating the real-time expert
system from those models.  Some of those techniques have just been borrowed from the
litterature, but we had to modify or even invent other techniques which simply did not exist.
We were pushed forward in doing so by the need of realizing an actual operational system.
So, we argue that, considering state-of-the-art AI litterature, when seriously realizing a
relatively ambitious application, a large amount of work must be devoted to 'theory' -though
of modest scope-, indeed both to theorization of particular aspects, and to integration of
various approaches.  We think that this reveals a need, which does not seem to be fulfilled
today, to redirect the 'theory' of 'applicative AI'.
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1  Introduction

This paper presents the architecture of the KSE system, the aim of which is to causally explain
undesired events in a nuclear plant, and to provide its operators with a description of the plant
operational state.  In particular, we describe original knowledge-compiling techniques, which make
it possible to automatically generate a real-time expert system from the models of the plant, and
from a logical specification.  We also discuss two attributes of real-life applications, which we
think should be paid more attention: size and errors.

Section 2 describes the aims of the system.  Section 3 describes its architecture.  First, we show
how the plant, the physical and functional behaviors, and the logical model of the system are
implemented.  Then, we present the knowledge-compiling strategy we use for compiling these
models.

Section 4 discusses various aspects around the KSE system, in particular the issue of correctness of
a system related to the correctness of its model.

In Section 5 we mention that the main problems we had in developing KSE had to deal with size,
and errors in building the models.  We argue that the consequences of these issues are not
sufficiently taken into account in the 'applicative AI litterature'.

2  General aims of the KSE system

2.1  The problem

The KSE project aims at developing a real-time system for alarm-processing in nuclear plants.
This means that, whenever an alarm triggers in the plant, the system must be able to provide the
operator with the initial cause of the alarm, and with a description of the current state of the plant in
terms of functional availability of components.

This is not a diagnosis problem, in the 'pure' sense given in the AI litterature.  Here, a 'misbehavior'
does not mean that a component is 'broken' -though this is also possible-, but simply that something
happens which makes the plant operation troublesome.  So, misbehaviors are stated in terms of
physical states, and the system must find out the very cause of the current misbehaviors.

Another difference is that there is no lack of information in nuclear plants.  On the contrary, the
operators are sometimes sunk under an overwhelming flow of information.  Up to 300 alarms can
trigger in a single minute, the whole set having just a few causes.

2.2  What the KSE system is

The system we have developed has been under operation for more than two years in two nuclear
plants in France.  It is fully automatic, i.e. it takes its data from the plant information system, and
presents its diagnosis to the plant operator without his intervening.

Indeed, the real-time system is an expert system, but we did not write it.  Instead, we have
developed a model-based shell, where models of various natures are implemented, and a knowledge
compiler, which automatically generates the real-time system from its model.  The basic intention
was to base KSE on models in an as declarative as possible form, on one hand, and to have an



efficient real-time system, on the other hand.  As it is well-known, these objectives are
contradictory if naively considered.  So, our solution has been to develop a knowledge-compiling
component.

2.3  What the KSE system is not

The scope of the system has been limited to the electric part of the plant.  Indeed, all the plant
components which are electrically connected are concerned, but thermodynamical processes are not
taken into account.  The reason is that fully solving the problem would have been intractable
otherwise1, in particular because of the size of the application.  The consequence of these choices is
that the system need not be able to reason about time (an instantaneous view of the plant is
sufficient), and to handle sophisticated physical models (thermodynamical processes).

So, as we shall see, the KSE system is not an application of sophisticated AI techniques.  Instead, it
is the result of the application and the integration of relatively sophisticated, and relatively new,
techniques.  We argue in Section 5 that there are two reasons for that: size, and errors.

3  The KSE system:  Building a model, and compiling it

This section is subdivided in two parts.  We first describe the model of the plant we used, and the
logic of operation of the real-time system.  We then show how this model can be compiled into the
real-time system.

3.1  Models of the plant and of the monitoring task

As mentioned in the previous section, our constant intention in KSE was to separate the various
sources of knowledge required by the application.  We essentially have here three large chunks of
knowledge.  Firstly, there is a model of the plant, i.e. of what it is made of, of the nature of and the
relationships between its components, and of the useful information on them.  This model fits well
the object-oriented or semantic network frameworks.  Secondly, there is a description of the causal
relationships between the various quantities vehiculated by the plant.  The quantities can be of a
physical or functional nature.  This description is embodied into a set of principles, which take the
form of "predicate calculus causal implications".  Indeed, only a subpart of the predicate calculus
has been used, which on one hand is sufficient to express the principles, and on the other hand
makes it possible to efficiently compile the system.  Thirdly, there is a logical model of the
intended operation of the real-time system.  Though relatively simple, declaring this model was
necessary to achieve our goal of separating the knowledge sources.  Each source has its own
checking mechanism.

The first and second sources - description of the plant and of its behavior - is probably sharable
with other application.  The third source is particular to our particular application.

3.1.1  Description of the plant

Information of various nature is described here.

                                               
1  However, we now think of doing it.



First, there is a hierachical classification of the components and of the kinds of components.  An
object (class or component) can be an instance or a kind of several classes.  A multiple-inheriting
mechanism has been implemented, which can deal with exceptions.  This means that any property
can be inhereted by an object from its classes (default rule), except when an explicit exception has
been stated.  So, some classes or objects have exception properties.

Second, the links between the components are obviously described.  There are several kinds of
links, according to the nature of the fluid they convene - e.g., electricity or availibility.  The links
are 'causally' oriented in the possible directions of the flows.

Third, there is a model of the attributes of the objects.  This essentially describes the possible values
of attributes, and their mutual exclusions.  Attributes can describe the positions of components
(open/closed), the values of quantities (0/1 or low/medium/high), the kind of information provided
by the plant instruments, the undesired states, which states can be considered as an explanation of
an undesired state, etc.  The kind ok knowledge represented here is required to solve the monitoring
task, and also for compiling the models (next section).

Indeed, the main problem here is not theory - all this is relatively conventional-, but size.  The KSE
system works on 12,000 components, and their model adds up to 150,000 attribute-value pairs.  An
attempt has been made to retrieve this knowledge from existing CAD databases.  However, some
properties were not described, such as the nature of fluids and the corresponding attributes.  So, the
largest part of this 'database' has been manually rebuilt for both plants where the system has been
installed.  A consistency-cheking component has been added, which verifies this database, but
experience showed that errors remain.  This is a difficult problem which shall be mentioned later
on.

3.1.2  Behavioral and functional descriptions

We describe here the causal relationships between quantities of interlinked components of some
given types.  Let's take a simple example.  Let's consider some pieces of electric hardware -
causally- linked to an electric board (Figure 1).
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Figure 1: n components linked to an electric board

The corresponding physical principles are as follows:

[ x Ako Electric Board [ x Ako Electric Board
∃y [ y Ako ElectricHardware ∀ y [ y Ako ElectricHardware

y ElectricallyFeeds x y ElectricallyFeeds x]
y Potential 1] ==> [y Potential 1]

] ]
causes--> causes-->



[ x Potential 1] [ x Potential 1]

The words Ako, ElectricHardware, Potential, etc, refer to entities of the plant model.

We have here two causal models.  Indeed, they could be deduced from each other in some cases,
but not in general.  The fact that physical laws are causally oriented implicitely introduces some
functional aspects: for the class of component described by a given principle, fluids flow in the
causal direction.  This is a global information, which cannot be known unless the whole plant
connectivity is known (in particular the fluid sources).  Indeed, we precisely intended to separate
the principles from the description of the plant.  Nevertheless, if causality was removed, the
principles would merge into a single equivalence.

Both principles above mention a physical quantity (Potential).  Other principles mention other
kinds of quantity, such as availability - i.e., the possibility for the operator to use a component.  The
functional properties we had to deal with had the fortunate property that they could be specified
locally, so using principles.

Principles mention classes.  Principles can be inherited along the classification, with exceptions.

These principles are simple.  There are more sophisticated ones, but it turned out that they all have
a common form.  Indeed, they all mention an x of a given class of hardware, then other y's from
other classes, either universally (with an implication) or existentially quantified.  No quantifiers are
nested.  Moreover, the forms "for all y's different from y0… " and "there exists y different from
y0… " occur frequently.  So, we imposed to express all the principles within this simplified
predicate calculus, and we introduced two modified quantifiers, "for all …  except… " and "there
exists …  different from … " for convenience.  All the programs processing this knowledge base
were limited to this modified "predicate calculus".

The principles are also checked by a specific component, which verifies that they are not
completely stupid.  In a practical way, an error in the principles occurred only once.

There are currently about 250 principles.

3.1.3  Model of operation of the task

The task of KSE consists of explaning the initial causes of undesired states.  Indeed, the algorithm
is relatively simple.  From an effect, one can generate all the potential causes of this effect by using
the principles.  If a component has a state, which is known or deduced from the plant instruments,
and which is inconsistent with the assumption that it causes an undesired effect, then this assumtion
can be removed.  Eventually, all the unremoved assumptions are -potential- causes of the undesired
effect.

So, the task of KSE can be subdivided into three subtasks: deducing an as complete as possible
description of the state of the plant (in terms of physical quantities) from the instruments data, then
generating the possible assumptions, then removing the assumptions.  All three subtasks use the
description of the plant and the causal principles.

This behavior can be described by six inferences rules which use two extra symbols, namely "∝"
for "is a potential cause of" (assumption), and "∂" for "is a cause of" ("definitely"):



A causes B   and   A   → B Causal deduction
A causes B   and   ¬B → ¬A Contraposition
A causes B   and   B   and   ∝B  → ∝A Assumption generation
A causes B   and   A → ¬∂B Assumption causal negation
¬A → ¬∂A Assumption state negation
∝A → ∂A [Default] Assumption confirmation

The last rule is a default rule.  This set of inference rules must start with some assumtions (of the
form ∝H) corresponding to the observed undesired states.  Clearly, the state of the plant is
computed by the first two rules, the assumptions are generated by the third, removed by the fourth
and fifth, and the initial causes are established by the sixth.

The default here is relatively simple.  To obtain a minimal set of initial causes, we just have to
apply the first five rules as much as possible, then the default rule.  Moreover, the two first rules
can be used first, then abandoned, and the fifth used before the fourth.

Contrarily to all the other aspects of the KSE system, this specification of the task of the real-time
system has not been incorporated in the system.  It is just a formalization for its designers.  We
shall see the consequences of this in the compiling part of the system.

Remark 1:  There are other inference rules which would be consistent with the intended semantics
of ∝ and ∂, e.g. ¬∝A → ¬∂A.  However, they are unuseful in our context.

Remark 2:  The assumption generation inference rule mentions B in its LHS.  This is not
necessary, but generalizing this rule by removing B would come down to generating many more
assumptions.  In a practical way, including B eventually means "we have found some initial
causal explanations of the undesired events, though there might be 'more initial' ones, but, as far
as we know, we have no means to prove them".  So, this comes down to some kind of "epistemic
ignorance".

3.2  Compiling the models

Once the computer has been fed with the models, another program takes them as input and
compiles them into the real-time system.  Before describing how this is done, we give an idea of
what the real-time system consists of.

3.2.1  The target: The real-time system

The real time system works as an infinite loop.  At each step of the loop, it takes the data issued
from the plant instruments (essentially the values of some physical quantities).  It then perfoms its
computations as described above, and provides the user with the initial causes of alarms and
undesired states (if any), and with the "functional state" of the plant, e.g. the components
availability.  Then, another step is performed.

So, the real-time system only deals with real-time information (!).  All the knowledge about the
plant (the components and their links, the principles) can be wired in.  Indeed, the real-time system
is made up of zero-order production rules, of several kinds.  Firstly, there are three groups of rules,
corresponding to the three subtasks: deducing the plant state, making assumtions, and eliminating
assumptions.  Secondly, each rule is particular to a single component, and implements one of these
activities for that component.  For example, for a particular electric board b112, having three pieces
of electric hardware linked to its entry, say e1, e2 and e3, there are four rules which say:



if e1_has_potential 1
then b112_has_potential 1 (two other rules)

if e1_has_potential 0
and e2_has_potential 0
and e3_has_potential 0

then b112_has_potential 0

These rules represent the particular application to board b112 of the principles of Section 3.1.2
under the first inference rule.

So, this gives the idea of the compilation process.  The logical inference rules are instanciated
against the principles, and applied to the description of the actual plant, to yield the first-order rules.
In other words, everything which is not real-time in the models is forgotten or wired in the real-
time rules.  It just remains real-time information, which cannot be known at compile time,
obviously.

In KSE, this yields about 47,000 rules.

3.2.2  Knowledge compiling strategy

Compiling is done in three steps.

The first step consists of "mixing up" the principles and the operation model (the inference rules).
This step will produce new "principles", which are not causal ones, but which describe the
deductions that can be performed on a generic plant by using the inference rules.  To sum up, this
first step instanciates the inference rules by the principles.  The new "principles" have the same
form as the causal ones.  We shal call them inferential principles.  This first step is concerned with
a small part of the plant model, namely the description of attributes, of their possible values and
their mutual exclusiveness.

The second step takes all the principles available (causal and inferential), and transforms them into
a set of first-order production rules which do not use any explicit quantifier.  There are two reasons
why performing this step.  Firstly, we did not have at hand a production rule language which
supported explicit quantifiers, in particular our modified ones.  Secondly,  these rules have a very
particular form.  In their left-hand sides (LHS), they mention relations on objects which are known
in the plant model (for example the linking relations between components).  In their RHS, they
write a zero-order rule according to a template, the variables of which will be instanciated by actual
plant components when the production will be run.  This second step is mainly concerned with the
hierarchical classification in the plant model.

The third step consists of running the previous first-order set of productions on the working
memory made up of the whole description of the plant (actual components, links, … ), and yields
the set of zero-order production rules, which is the real-time expert system.  This third step is
concerned with the major part of the plant model, at least in size, that is its actual description down
to the components.

3.2.3  Details of knowledge compiling: from causal to inferential principles



We describe here some particular aspects of the first step previously described.  The second and
third step are described in the next subsections.

Only the first four rules intervene in the principles transformation.  Each principle is transformed
by each inference rule according to a transformation grammar.  This grammar states how to
transform a causal condition or consequence into a new condition or consequence.  This grammar is
obvious -it is the identity- for the causal deduction inference rule, which leaves the principles
untouched.  However, it must be detailed for the other inference rules.

• Contraposition: The main problem relies in the transformation of quantifiers, and in the
interpretation of negation.  The main point is that we want to build non-causal principles which
are Horn clauses when instanciated.  Let us explain this.

Let us take the example of a causal principle having the form:

"if x is in class C such that,
for all y's in class C' linked to x by L(x,y), K(y) is true

then RHS(x)"

When variable x is bound to a particular object X through the description of a particular plant,
there is only a finite number of y's which make "y in class C' linked to x by L(x,y)" true, say
Y1,… ,Yp.  So, the whole instanciated principle is equivalent to

"if K(Y1),… ,K(Yp) then RHS(X)"

Now, this clause can be transformed by transposition for all i in [1,p] into the following Horn
clauses:

"if ¬RHS(X) and K(Y1),… ,K(Yi-1),K(Yi+1),… ,K(Yp) then ¬K(Yi)"

If we come back to principles, these clauses are the instanciation of the contraposed principle:

"if x is in class C such that ¬RHS(x) and,
there exists y0 in class C' linked to x by L(x,y0) such that

for all y's in class C' different from y0 and linked to x by L(x,y), K(y) is true
then ¬K(y0)"

For example, the principle "if all the entries of an electric board have Potential 0, then the board
has Potential 0" is contraposed into "if a board has Potential 1, and if all the entries except e0
have potential 0, then e0 has Potential 1".

Now, there is another problem: the interpretation of negation.  Potential is an attribute having
just two mutually exclusive values -0 and 1-, and this is described in the plant model.  So, in this
case, the system interpretes "x Potential 1" as the negation of "x Potential 0", and conversely.
However, an attribute may have more than two exclusive value.  In this case, the system
interpretes "¬(x Attr Val)" as "x cannot have value v through attribute Attr".  So, for each
attribute Attr, the system synthesizes a new attribute Imp_Attr, which reads "Impossible value
for Attr".  This is the way negation is handled in contraposition.



However, if it is possible at some time to deduce that x.Attr cannot have any of the possible
values of Attr except v, then v must be deduced.  This is not done in the principles
transformation, but in a later step in the compilation process:  for any attribute having more than
two possible values, and for any component concerned by this attribute, some rules are added to
the real-time expert system which make this kind of deduction.  Fortunately, in a practical way,
there are few at-least-3-valued attributes.  So, the real-time system is not overwhelmed by this
kind of stupid rule.

Now, we shall not fully describe the grammar of contraposition, instead we just give some hints.
Grammar rules locally transform causal conditions and consequences into contraposed
conditions and consequences.  For example, here are two transformation rules:

(∃y∈C' L(x,y) and K(y)) is a causal condition ---->
(∀ y∈C' L(x,y)) is a contraposed condition and
(¬K(y)) is a contraposed consequence

(∀ y∈C' L(x,y) ==> K(y)) is a causal condition ---->
(y0∈C', ∀ y∈C'-{y0} L(x,y) ==> K(y)) is a contraposed condition   and
(¬K(y0)) is a contraposed consequence

Here, x is a free variable w.r.t. the involved formulae, L refer to the structural description of the
plant, and K to its state (real-time information).

Assumption generation:  The goals are the same as in contraposition, i.e. to get principles which
instanciate as Horn clauses, but the means are somewhat different.  Indeed, this rule is
implemented in a weakened form when there is a universal quantifier of the causal principle
being transformed.  If we consider a causal principle having the form

"if x is in class C such that,
for all y's in class C' linked to x by L(x,y), K(y) is true

then RHS(x)"

then it is transformed into the following assumtion generation principle:

"if x is in class C such that RHS(x),
if ∝RHS(x)

if y is in class C' linked to x by L(x,y)
then ∝K(y)"

An unweakened form would be:

"if x is in class C such that RHS(x),
if ∝RHS(x)

if y is in class C' linked to x by L(x,y)
then ∝[∀ y∈C' L(x,y) ==> K(y)]"

The same is true if we substitute an existential quantifier for the universal one.  In this case, the
assumption generation principle will state that there possibly are several causes, but it will
"forget" that just one of these causes is necessary to explain the effect.



This means that the assumption generation process does not keep track of "and's" and "or's" of
causes.  In a practical way, this is not a problem, because eventually all the possible initial
causes will be deduced -this could be proved-, but there is no distinction between "and" and "or"
sets of causes.

The ∝P and ∂P are represented by synthesized attributes.  For example:

∝(x Potential 1) ˜ ∂(x PossibleInitialCause 1)

In a practical way, we do not distinguish the causes of different effects, though this could be
possible.

We do not give here the grammar for assumption generation, it works in a similar way to
contraposition.

Assumption elimination:  There is no particular difficulty here, because, so to speak,  this
transformation keeps the order of deduction of the causal principles.

In a practical way, the grammars have been implemented as a set of first-order production rules
(about 150 rules).  From 250 causal principles, 400 inferential principles are deduced.  Only a
subset of the 250 initial principles are related to physical quantities, and thus deserve to be
transformed (the assumption reasoning is irrelevant to 'functional' principles).

3.2.4  Details of knowledge compiling: from inferential principles to RTSE compiler

The second step starts from the inferential principles, and generates a set of productions which,
when applied to the full description of an actual plant, synthesizes the real-time expert system
(RTES).  Indeed, this transformation is relatively straightforward.  The only trick is to distinguish
what is related to real-time information and what is not.  For each inferential principle, a set of
production rules is generated, which mentions in their LHS the structural description, and the RHS
of which is the zero-order production rule template.

There are 10 production rules generated from each inferential principle in average, that is from 400
principles, about 4,000 first-order rules are deduced.

3.2.5  Details of knowledge compiling: RTSE compilation

Here, the mechanism is straightforward: the 4000 first-order production rules are run with the
whole structural description as working memory (about 150,000 'facts').  This yields about 47,000
zero-order rules in the current version.

3.2.6  Knowledge compilation in practice

Our architecture has some practical advantages: it is possible to disconnect 'conceptual
maintenance', which consists of maintaining the principles and the generic knowledge, and the
'structural maintainance', which consists of maintaining the structural description.

Steps 1 and 2 can be performed purely off-line.  This means that these steps are fully independant
from the structural description of the plant (the actual components, and their connections).  In



general, the kinds of components a plant is made up of do not change overtime, or not very
frequently.  Would a new kind of component be present, new principles should be added, and steps
1 and 2 should be rerun.  So, in general, these steps can be performed in our laboratory, and the
corresponding programs need not be used at the nuclear plant site.

Step 3 depends on the structural description.  In a practical way, the components of a nuclear plant
periodically slightly change (once every three weeks in average).  So, the database containing the
structural information must be maintained by the plant operators while changes occur.  Whenever
this happens, the third step must be reexecuted, to regenerate the real-time expert system.  We do
not have implemented any incremental compilation mode, though this would have been possible
(but unuseful).  This process takes about 10 hours.  Once this is done, the new real-time system is
launched.

The real-time system, together with the interface programs, provides a diagnosis every 10 seconds.

4  Other aspects of KSE

We discuss here various issues raised by our architecture.

4.1  Performance

As said above, the models are built, and the first steps of compilation are performed in our
laboratory.  So, time and memory are of no concern here.

The third step requires about 10 hours, which is compatible with the 'time constants' of real-time
operation.  Otherwise, we think that it could have been possible to reduce this time by rule-
compiling techniques, and/or incremental compilation.

The RTES performs a full run in 5 seconds (10 seconds with the interface).  We have developed
compilation techniques which would enable us to reduce that time by a factor 15.  The reader
should not be amazed by this performance: zero-order rules are very simple.  So, we can hope to
use bigger RTSEs, up to 500,000 rules.

4.2  Correctness and completeness

Though we have not proved it formally, we think that our system always gives a right answer, and
always provides the operator with the best possible view of the plant state, at least in terms of initial
causes, and functional properties.  However, this is true in a perfect world.  Obviously, the
correctness of an answer strongly relies upon the correctness of the model and of the real-time data
provided by the plant information system.  Our two-year on-site experiments showed that the
system can fail to give a correct answer mainly for two reasons: there is some piece of real-time
data which is incorrect, or the structural description is incorrect2.  The two reasons occurred at the
same rate.

To prevent bad operation from that, KSE also implements in the RTES a component which checks
its deductions against the available information.  So, it can find out that something is incorrect, and
informs the operator if so.  It could also be possible to distinguish which deductions remain correct

                                               
2  It happened once that a causal principle was incorrect.  This has been readily fixed.



despite a known contradiction.  However, finding out the cause of a contradiction is a difficult
problem.  As mentioned, we cannot consider the 'pure' problem where the structual description
would be perfect.  So, the principles of model-based diagnosis must be reinterpreted here.

We have not solved this problem yet.  However, a step has been accomplished by using the system
Melodia.  Melodia is a zero-order production rule verifier, which from a set of productions yields
all the clauses describing the initial working memories which do not lead to inconsistency.  In our
case, the initial working memory is made up of the real-time data.  We got very surprising results
when applying Melodia to some instances of the RTSE: Hundreds of thousands of inconsistency
clauses were generated.

Indeed, after a thought, this is not amazing.  The RTSE answers are correct provided that data are
correct, but nothing ensures in its design that it is still the case otherwise.  So, the inconsistency
clauses produced by Melodia are constraints on the physical data. If the clauses are satisfied by the
data, then the data can be considered as being correct.  If a contradiction then occurs during the
RTSE inference process, there is probably an error in the structural description from which the
RTSE was compiled.  On the contrary, if some clauses are violated, then there is a problem in the
data.  In this case, diagnosis strategies can be used to isolate the faulty piece of data.

These ideas have not been implemented yet.  However, we think that this could be possible, despite
the size of the set of clauses to be considered.  In particular, checking the data against 500,000
clauses should be possible in a few seconds; this is a problem very similar to zero-order rules
compilation.

5  What is important in applicative AI

We think that this work can provide other AI practitioners with interesting knowledge compiling
techniques.  Beyond this point, we would like to make a few comments drawn from our experience.

We started in this work from the general ideas around the model-based paradigm.  However, some
of the main issues in research in this domain were of little use to us.  For example, we did not use
qualitative physics, neither model-based diagnosis.

We already mentioned that we limited our work to the part of the plant where the physical
processes are simple, and where no reasoning about time was necessary3.  Though that would be
necessary to extend our system to all the components (in particular those that involve
thermodynamical processes), we already had critical problems in making our system work on a
realistic scale.

The same is true with model-based diagnosis.  Our problem was very different, since we were in a
world where information about the 'faulty components' is available (indeed, overwhelming).
Moreover, the notion of a faulty component is different, since in our case this does not mean a
"broken component", but a component having a behavior causing an undesired event, from the
point of view of global operation.  Nevertheless, we mentioned in Section 4 that we must
sometimes consider "broken components", when a measure seems to be wrong.

                                               
3  Though a similar approach to ours is possible in this case, see [Vinot 92].



So, there is here a first discrepancy between "theory" and "practice": real-life problems are very
different from what toy problems suggest.  However, beyond these differences, there are two other
reasons why we could not directly apply research work in our domain: size, and errors.

Size means that various techniques proposed in the AI litterature are irrelevant: they have too low
performance.  For example, we did not use an ATMS for performing assumption reasoning, just
because we were dealing with 12,000 components.  This is also the reason why we stressed the
development of knowledge compilation techniques.

Errors are the consequence of size.  For example, we cannot think of any complete static checking
of the structural description.  An error may become visible once the system is used on the real
plant, but not before.  Indeed, in all the pieces of work on model-based reasoning, the device which
the system works on is supposed to be perfectly described.  If this is not the case, what happens?
What happens, in particular, when one uses sophisticated techniques?  We think that there is a
robustness issue: the physical system is not the only device which is susceptible to failure when
using a diagnosis system.

So, to conclude this section, we do not intend to prosecute AI theorists.  On the contrary, we think
that theory is necessary, and we had a hard time to develop our own techniques and framework.
However, we think that theory should be turned, at least in 'applicative AI', to more realistic issues,
in particular to the consequences of size and errors.
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