
Predicting the Behavior of a Knowledge Base

Jean-Luc DORMOY

Electricité de France Research Center
IMA/TIEM

1, avenue du Général de Gaulle
92141 Clamart Cedex

FRANCE
E-mail: dormoy@cli21cz.edf.fr

Abstract

This paper presents the underlying ideas of a knowledge-based system, called Shal,
which, given a knowledge base, attempts to capture the key features of its behavior.
The idea is that a priori understanding the behavior of a knowledge base can help to
achieve the multiple tasks involved in knowledge engineering, in particular
interpreting and/or compiling, contradiction discovery, and acquisition of new
knowledge.  Moreover, the concepts Shal uses, e.g. reasoning about sets, symbolic
constraint propagation, and simple theorem proving mechanisms,  can in turn be
incorporated into the basic language of the knowledge-based system, thus extending its
scope.  As Shal syntactically is a normal knowledge base, this positive feedback can be
injected into the Shal design process itself: as soon as a new concept or reasoning
mode is defined, it can be used to improve the behavior of Shal and the acquisition of
new knowledge to be embodied into Shal's knowledge base.  This is the conventional
bootstrapping process, we apply here to knowledge acquisition.  This key feature
makes Shal an indefinitely extendable system.  We already run four successive
versions of Shal, each one using the previous one, and we describe here the
improvements Shal brought to the initial inference engine.
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1  Introduction

The official claim of a knowledge base (KB) designer is that his system captures
knowledge from a specific area.  The unofficial claim is that the system exhibits the
intended behavior.  This is due in part to the narrowness of today's AI systems: in the
case of rule-based systems, an expert's rule can hardly ever be implemented in a
"computer rule", but in a set of productions, plus procedural tricks for control.
Furthermore, what is available to the designer is, roughly speaking, an interpreter or a
compiler.  This "knowledge processor" imposes in turn some constraints on the
knowledge base, because of the choice of its "logic".  And it merely runs the
knowledge base.  Moreover, it is based on a general algorithm (e.g. RETE or TREAT),
which is supposed to be efficient enough for all the possible KBs.  The result is that the
intelligence exhibited by a KB is not the system's, but the designer's.
All this is the well-known bad side of things.  As we did not pretend to solve all these
frustrations, we tackled a shorter-term problem: We designed a production system,
called Shal, which aims at discovering the main features of the behavior of a
production system.  The idea is that, when given a knowledge base, we know or we
think much more about it than conventional knowledge processors, such as inference
engines.  There are two main reasons for that.  Firstly, there exists implicit knowledge
which is not contained within the knowledge base.  For example, we know the kind of
Working Memory (WM) it should be run on.  Secondly, we have knowledge about
knowledge-based systems that enables us to deduce things about a knowledge base.
This work reports how we attempted to capture this kind of knowledge and to embody
it into a knowledge-based system.
In order to achieve its goals, Shal is able to analyze the RHS-LHS1 links between
rules, to group rules in sets presenting an interesting global pattern, and to reason about
the growth of classes of objects in the Working Memory (WM).  It can also use
implicit knowledge, i.e. constraints, about the objects handled by the KB; this
knowledge must be given by the KB designer.  It can take advantage of its rough
predictions to help the standard interpreter to be more efficient, or to synthesize a
compiled version of some subsets of productions.  It might also discover errors by
confronting its own deductions with the constraints provided by the user.  Naturally, it
can also display the main features of the expected behavior of the KB.
Moreover, Shal is designed as a production system, in order to take advantage of its
own knowledge.  Indeed, Shal was designed (and is still being extended) through a
sequence of bootstrapping steps.
Eventually, the KB designer still has trouble, as previously described, but Shal can
help him to figure out how his KB system behaves.
Section 2 gives a detailed example.  Section 3 shows how Shal works, and what it can
deduce.  Section 4 emphasizes various aspects of Shal's design process.  Section 5
gives an overview of related work.

2  A motivating example

                                               
1LHS: Left-Hand Side.  RHS: Right-Hand Side.



This section describes, through an example, what Shal does.  The description of the
example is somewhat long and tedious, but this was necessary to give a realistic idea of
our system.  However, it must be pointed out that the range of application of Shal is
not limited to this example. This will be fully described in Section 3.

2.1  Description of the example

We show here a simple but non simplistic example: a knowledge base made up of two
rules, which aims at performing arc consistency in a Constraint Satisfaction Problem
(CSP):

Rule RemovePossibleValue
If x PossiblyIsInDomainOf X

(x Through (X,Y)) HasNumberOfConnections 0
Then

(x PossiblyIsInDomainOf X) is Removed

Rule MaintainNumberOfConnectionsWhenRemoved
If (x PossiblyIsInDomainOf X) is Removed

y PossiblyIsInDomainOf Y
x IsInImageOf (y Through (Y,X))
(y Through (Y,X)) HasNumberOfConnections N

Then
(y Through (Y,X)) HasNumberOfConnections N-1

A CSP consists of a set of variables, each having a given domain, and submitted to a
set of constraints.  Solving a CSP means assigning values to the variables from their
respective domains so that all the constaints are satisfied.

For instance, the following CSP (see also Fig. 1(a)):
Dom(X) = {x1,x2,x3}, Dom(Y) = {y1,y2}, Dom(Z) = {z1,z2,z3,z4},
Constraints on (X,Y), (Y,Z), and (Z,X):

(X,Y): {(x1,y1),(x2,y1),(x3,y2)}
(Y,Z): {(y1,z1),(y1,z2),(y1,z3)}
(Z,X): {(z1,x1),(z2,x2),(z3,x3),(z4,x3)}

has two solutions: (x1,y1,z1) and (x2,y1,z2).

Performing arc consistency means propagating the possible values of the variables by
considering each constraint locally.  The basic principle of arc consistency is that, if x
is a possible value of X, and if there is no couple (x,y) in a given constraint (X,Y),
where y is a possible value of Y, then x should no longer be considered as a possible
value of X.  The advantage of arc consistency is that it is far simpler a problem than
the whole CSP.  It has been shown [Mackworth & Freuder, 1985] that arc consistency
is polynomial - though the full problem is NP-complete.  An optimal algorithm is
given in [Mohr & Anderson, 1986].
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Figure 1: Graphical representation of a CSP
(before and after arc consistency)

The CSP example above is represented in the production system working memory in
the following way (we give only part of it):

x1 PossiblyIsInDomainOf X   x2 PossiblyIsInDomainOf X
…

y1 IsInImageOf (x1 Through (X,Y))   x1 IsInImageOf (y1 Through (Y,X))
…

(y1 Through (Y,X)) HasNumberOfConnections 2
…

To explain what precedes, PossiblyIsInDomainOf describes the range of each
variable possible value, IsInImageOf describes the images of a possible value
through a given constraint, and HasNumberOfConnections gives the cardinality
of the range of each possible value through all the constraints.  This description is
redundant and does not correspond to a strict representation of the initial CSP, but it is
clear that it could easily be obtained from it.

Now, the two rules act on this working memory in the following way:
• The rule RemovePossibleValue removes a possible value x from the domain

of variable X if it has no connection through a constraint (X,Y) on X.
• The rule MaintainNumberOfConnectionsWhenRemoved propagates a

value removed from the domain of a variable X to the variables Y linked to X
through a constraint (Y,X).  This is done by maintaining the number of
connections of the possible values of Y.

It is clear that these two rules implement the "arc consistency principle" mentioned
above.  If we run them on the example, we get the ranges of possible values
represented in Fig. 1 (b).  The sequence of rules firings is:

Rule fired Main action
RemovePossibleValue z4 removed from domain of Z
        " y2 removed from domain of Y
MaintainNumberOfConn… x3 through (X,Z) has 1 connection



        " x3 through (X,Y) has 0 connection
RemovePossibleValue x3 removed from domain of X
MaintainNumberOfConn… z3 through (Z,X) has 0 connection
RemovePossibleValue z3 removed from domain of Z
MaintainNumberOfConn… y1 through (Y,Z) has 2 connections

2.2  The behavior of a knowledge base

The task of an inference engine is to run a knowledge base.  All the existing inference
engines are based on a more or less efficient algorithm.  However, they do not take into
account the particular features of the knowledge base they interprete or compile.   In
the previous example, it is clear that the two rules will call each other in a recursive
manner: as soon as a possible value is removed by rule 1, rule 2 possibly applies to this
removed value.  In fact, this is the only case when rule 2 can apply, since only rule 1
can remove a value.  Moreover, when rule 2 applies, then rule 1 also applies, provided
that the number of possible connections of Y through (Y,X) passes from 1 to 0.
All this can be deduced by closely scanning the knowledge base.   One might also
require extra-knowledge about the knowledge base, such that "there is no already-
removed value in the initial working memory".  This is some kind of implicit
knowledge.  As this kind of fact cannot be deduced from the mere knowledge of the
rules, it should be asked to the designer.  Analyzing a knowledge base this way and
acquiring the required extra-knowledge from the designer is what Shal performs.
In this example, Shal eventually deduces that running rules 1 and 2 is equivalent to
calling procedure R1, which in turn calls R2:

R1: Find out (x,X) such that rule 1 apply.
Perform the action of rule 1.
R2(x,X)

R2(x,X): Find out (y,Y) such that rule 2 applies.
For each such (y,Y):

Compute N (the number of connections of Y through (Y,X))
Apply the action of rule 2.
If N=1 Then R2(y,Y)

This is the structural behavior of the knowledge base, as intended by its designer.

2.3  Compiling a knowledge base

What we called in the previous section a "structural behavior" also is an algorithm.  In
particular, rules 1 and 2 can be compiled by implementing this algorithm.  This
algorithm can still be refined.  In the example, one could for instance state more
precisely how the "Find out" actions should be implemented, in particular by deciding
that some indexes or pointers on the working memory should be maintained while
running the knowledge base.  A set of "good" indexes could be:
• Given (x,X), the set of (y,Y) such that



y IsInImageOf (x Through (X,Y))
• Given (x,X,Y), N such that

(x Through (X,Y)) HasNumberOfConnections N
• The set of (x,X,Y) such that

(x Through (X,Y)) HasNumberOfConnections 0
(The latter index should not be maintained after R2 is called).
These indexes are not necessarily the "natural" ones, as those possibly memorized by
an inference engine.  They are particularly well adapted to running this knowledge
base.

2.4  Contradiction discovery

As mentioned above, understanding the behavior of a knowledge base requires to get
some "extra-knowledge" about the knowledge base, for instance that a particular class
of working memory elements must be empty in the initial working memory.  However,
this extra-knowledge can also be used to criticize or discover contradictions in the
knowledge base.  For instance, imagine that the two rules in the example are embedded
in a larger KB, and that for some reason the KB designer has stated that no working
memory element mentioning the relation IsInImageOf can be removed when running
the rules.  Assume at least that the following action is added to rule 2:

Remove from WM[x IsInImageOf (y Through (Y,X))]
Then, there is a potential contradiction.
Indeed, this contradiction can be discovered by confronting two different partial
specifications of the same problem: the knowledge base and extra-knowledge.  This is
no consistency checking in the sense of logic.  Indeed, Shal does not systematically
look for a contradiction, but it can find one out while it acquires knowledge to
understand the KB behavior.

3  The Shal knowledge base

We showed in the previous section the kind of things Shal can do.  We shall know
describe how it does it.
From now on, we denote KB the knowledge base to be analyzed by Shal.

3.1  What is Shal?

Basically, knowledge bases considered by Shal are sets of production rules expressed
in an OPS5-like language.  There are some differencies between the language we use
and OPS5, but their descriptions are unimportant to a good understanding of this paper.
Shal also is a production system.  Thus, analyzing a given knowledge base KB requires
it to be translated into Shal's working memory.  This is done by a translator, as shown
in Figure 2, which transforms rules, premises, actions, variables into corresponding
objects belonging to the classes Rule, Premise, etc.  These objects are linked by slots or
relations which make the description meaningful and non ambiguous.  In short, every
element of KB is expressed in the frame language of Shal's working memory.



Rules in Shal speak about rules, premises, actions, variables, and so on.  There is an
example of such a rule in Fig. 2.  This is one of the first rules in Shal, it initializes the
positive recursion arcs between two rules (see Section 3.3).

Given knowledge base KB: 
Rule 1: If P1 & P2 &…  Pp Then A1 & …  Am 
                 …  
Rule n: If P'1 & P'2 &…  P'p Then A'1 & …  A'm

Rules →  Facts translator

Representation of KB in working memory: 
Rule1 HasPremise P1           Rule1 HasAction A1 
            …                                                …  
Rulen HasPremise P'p         Rulen HasAction A'm

Information for better 
interpretation

                    Shal: 
                     …  
Rule i: If a rule R1 Has Premise P & 
                a rule R2 HasAction A & 
                P and A can match 
            Then there is a potential arc 
                      from R2 to R1 
                     …

Compiled subsets 
of rules

Inconsistencies or 
probable errors

Figure 2: How Shal analyzes a given knowledge base

3.2  Knowledge about a knowledge base

As said in section 2, understanding the KB behavior requires some extra-knowledge,
i.e. knowledge about KB.  The time being, the language for expressing this knowledge
is based on the following concepts:

Classes and sets:  Classes and sets of objects can be defined, and the slots or relations
used in KB can be typed using them.  The main difference with the conventional
notion of a class is that a class C is for us a function which maps an initial working
memory WM0 and a nonnegative integer n onto a set C(WM0,n).  This set is the
actual set of objects corresponding to the specification of C after the nth rule
firing, when running KB with WM0 as initial working memory.  In the example of
Section 2, if C is the class of working memory elements mentioning the relation
HasNumberOfConnections, then C(WM0,3) contains ((x3 Through (X,Y))
HasNumberOfConnections 1) and ((x3 Through (X,Z))
HasNumberOfConnections 2).



Temporal constraints on classes:  Time is for us the discrete time of which instants
are the rules firings.  Moments are intervals of instants.  For example, one can state
that a particular class is steady, decreasing, or increasing when running the rules.
One can also state that a particular class is empty at a particular instant or during a
particular moment.  These constraints must hold for any "reasonable" initial
working memory.
One can also state some relations between classes and objets, for instance
membership or inclusion. These relations can be restricted to hold for some given
instants or moments, possibly quantified.  One can also manipulate union,
intersection, cartesian product and projection of classes, which also are classes.

Cardinality conditions on classes:  One can state cardinality conditions on finite
classes: minimum, maximum, or exact number of elements.  In particular, one can
state that a relation is one-to-one.

This knowledge is incorporated into Shal's working memory using an ad hoc
representation.

3.3  How rules are linked together

Let's turn now to the kind of things Shal studies and deduces.
The main tool for understanding a KB behavior is studying the potential recursions
between rules.  There are two kinds of recursion: positive and negative.  A positive
recursion between rules R2 and R1 occurs when performing an action of R2 adds an
instanciation to a premise of R1. A negative recursion occurs when, instead of adding,
this removes an instanciation.  Potential recursions can be suspected when a rule action
symbolically matches a rule premise.  In the example of Section 2, there is a potential
positive recursion between the action of rule 2 (y Through (Y,X))
HasNumberOfConnections N-1 and the premise of rule 1 (x Through (X,Y))
HasNumberOfConnections 0.  The rule of Shal shown in Fig. 3 installs the positive
recursions.
Hence, we have two oriented graphs, the rules being their vertices.  Several things can
be done on them:

Proving that a recursion is fictitious. This means that the potential recursion can
never happen.  It is only "syntactic illusion".  That can be proved using extra-
knowledge.  For example, if rule R2 mentions the actions P(X,Y) and Q(X,a) and
rule R1 the premises P(Z,U) and Q(Z,b), where a and b are two distinct constants,
and if Q is one-to-one, then the recursion between P(X,Y) and P(Z,U) is fictitious.

Proving that a recursion almost surely happens. This means that, if the potential
recursion between R2 and R1 actually happens, then R1 applies under a simple
condition. This is the case in the example of Section 2, since rule 1 applies after
rule 2 under the single condition N=1.

Other things can be done, such as recognizing that a particular subset of rules has a
specific pattern (see Section 3.5).

The main tool for studying the potential recursions is symbolic propagation.  This
means that Shal tries to propagate the symbolic variable bindings of rule R2



throughout the premises of rule R1.  In the example of Section 2, the recursion
between rule 2 and rule 1 is possible provided that the variables of rule 1 can be
substituted by the variable bindings of rule 2 according to:

xR1/yR2, XR1/YR2, YR1/XR2, 0/NR2-1
The condition 0/NR2-1 is equivalent to NR2=1, and this variable binding of rule 1
turns out to be correct under this single condition.
It must be pointed out that this symbolic propagation is efficient only by making an
intensive use of  the implicit knowledge provided by the user or discovered by Shal. In
the previous example, the fact that HasNumberOfConnections is one-to-one is
essential to draw the conclusion.

3.4  Simple theorem proving

Proving that a potential recursion is fictitious, or on the contrary that it almost always
happens, may not be straightforward.  Hence, Shal controls this task by performing
some kind of simple theorem proving.  The first step is to state some interesting
problems to solve, namely "Does a given potential recursion between rules R2 and R1
happen?".  This is transformed into "Does there exist instants n2 and n1, with n2 < n1,
such that the variable binding of R2 at instant n2 provides R1 with a correct variable
binding at n1 through the recursion?".  This formulation is used to properly denote the
respective variable bindings of R2 and R1.  Then, Shal imposes some necessary
conditions for a proposition to be true, and it states some actions to be performed to
check these conditions.  This enables it to reason locally.  Consider the example given
above, where R2 mentions the actions P(X,Y) and Q(X,a) and R1 the premises P(Z,U)
and Q(Z,b), with a and b two distinct constants, and Q a one-to-one relation.  There is
no specific rule in Shal for this particular case.  Instead, it first states that a necessary
condition for the recursion to happen is X/Z and Y/U, then that Q(X,a), and Q(Z,b),
then, that a=b, which contradicts a?b.  The actions to be performed are different kinds
of symbolic propagation.

3.5  Discovering sets of rules having a particular pattern

Another thing Shal can do is trying to recognize subsets of rules having an already-
known pattern.  We call this a global pattern.  Here are some examples of such
patterns:

Attached subrules:  It is the case of the example in Section 2.  Rule 1 is attached to
rule 2. As soon as rule 2 applies, and if the condition N=1 is fulfilled, then rule 1
triggers.  This pattern is useful when a rule is attached to a single rule or to a
subset of rules having a classification pattern.

Classification rules:  This pattern is made up of rules which are close to each other in
the KB, and which all contain the same pattern in their left-hand-side:

Rule i If P(X,Y) & …  Then …
 …

Rule i+p If P(X',Y') & …  Then …



If there is no positive recursion arc inside of this subset, then this subset of rules
comes down to selecting the objects (x,y) such that P(x,y), and then to checking
the remaining conditions of the rules.

Recursive classification rules:  The same as the previous one, except that some rules
mention in their action part the pattern P(X,Y).

Loop:  A subset of rules where the first rule selects an object or a couple of objects to
be studied, where the internal rules act on this object or couple of objects, and
where the last rule triggers the selection of another object or couple of objects.

Of course, a global pattern can contain another global pattern.  All these subsets can be
compiled (see Section 3.7).
The suspected subsets having a particular pattern are extracted from the KB by means
of ad hoc heuristic rules.  For instance, a subset of consecutive rules all having the
same premise and/or action pattern is strongly suspected to be a classification pattern
(recursive or not).  Then, these suspected patterns must be checked.

3.6  Selecting interesting subproblems

Usually, there are thousands of potential recursions in a knowledge base.  Our
experiments showed that Shal can prove that a large amount is fictitious only by using
simple symbolic propagation.  However, thousands remain, and it would be unrealistic
to perform full symbolic propagation between all the couples of rules linked by a
recursion arc.
It turns out that the few global patterns mentioned above are very frequent in
knowledge bases.  Otherwise, understanding the behavior of KB would be intractable,
even for a human being.  However, performing full symbolic constraint propagation in
a pure deductive way is impossible, and it is impossible as well to perfectly recognize
the global patterns at first glance.
Hence, the heuristics used for suspecting the global patterns are crucial.  Once a subset
of rules suspected of having a global pattern is selected, one can run full symbolic
propagation on this subset.  Indeed, the internal-most suspected global patterns are
examined first.  Then, if it turns out that there actually is a global pattern, a description
of its behavior can be substituted for the corresponding subset.  Eventually, the whole
KB can be analyzed by successively contracting it into nested global patterns.

3.7  Compiling and improving interpretation

As mentioned above, when a global pattern is recognized, it is possible to compile the
subset of rules into a sequence of simple procedures.  However, this is not always
possible, for various reasons:  either there is no global pattern matching KB, or Shal's
knowledge is not sufficient to recognize the patterns - some lack of knowledge in
symbolic propagation -, or compiling a recognized pattern turns out to be out of reach.
In any case, it is not always possible to completely compile a given KB.
However, when this happens - and this happens -, the deductions drawn by Shal can be
useful for improving the KB interpretation.  For instance, it is very important for the
inference engine to know that a given potential recursion is fictitious.  This can avoid it
to propagate working memory elements into part of the rules network.



There are some links between Shal and the inference engine which normally should
run the knowledge base.  When a subset of rule is fully compiled, the inference engine
calls the compiled procedures instead of interpreting the rules.  Otherwise, the
inference engine is capable of taking advantage of the pieces of information given by
Shal, in order to improve its efficiency.  In this case, Shal simply acts as an optimizer.

3.8  Contradiction discovery

This aspect is very important, though not yet fully developed.  As mentioned in Section
2.4, Shal can exhibit some contradictions by confronting KB and already-acquired
knowledge about KB.  That enables the system to focus the KB designer's attention on
the differences between what he thinks the system does and what it actually does.  Our
experiments showed that this was extremely useful in a practical way.
However, there is no logical checking mechanism in our system, and of course no
completeness property of the knowledge kernel for contradiction discovery.  Indeed,
we think that this would be a goal beyond reach.  Performing complete logical
checking is at least as difficult as processing full symbolic propagation between all the
couples of rules linked by a recursion arc.

4  The bootstrapping process, and current results

Shal is a knowledge base.  Thus, Shal can apply to itself.  In fact, it is not only
necessary, it is also one of the intended features of this work.  Indeed, it would be
intractable to design a completed version of Shal, and then to run it on various
knowledge bases.  There would be many undetected errors in Shal, and above all that
running Shal by means of the inference engine would require too many resources.
This is extremely frustrating, since we can reasonably expect that, once a completed
version of Shal can examine itself, it can work using reasonable amount of resources.
Then, we had to design Shal through a sequence of bootstrapping steps.  The basic
principle is: "As soon as you know something, use it".  To date, we have designed and
experimented four versions of Shal (and discarded many more), each one being
processed by the previous one.

4.1  The bootstrapping bottleneck

The difficulty lies in finding out a path towards the next version.  We first designed a
simple version of Shal for proving that some recursion arcs were fictitious.  Shal1 used
very simple symbolic propagation and implicit knowledge.  Then, we designed a
second version for eliminating more recursion arcs, in particular those which were
crucial in Shal1.  It turned out that this version required too many resources, and we
could not reasonably run it on itself.  The reason was that, for implementing more
sophisticated elimination of recursion arcs, we designed a knowledge base with many
recursion arcs which could not be eliminated.  In other words, in order to eliminate
recursion, one must first be able to process recursion properly.
What happened then is the main bottleneck of our approach.  When designing a piece
of knowledge K1,  one must be able to reasonably process K1.  If K1 cannot process
itself, then one must design K2 for processing K1.  This loop might go on.  However, it



must stop quickly, otherwise the knowledge base becomes too intricated and simply
too large.  Moreover, Shal's growth is not linear in some sense.  Suppose a new chunk
of knowledge K is added to Shal.  Then, when running the extended Shal system on
itself, K is present not only in the production memory,  but also in the working
memory.  This is at least a quadratic process.  Hence, we must find a trade-off, but this
trade-off must be good enough to enable the extended system to process itself.
The second version of Shal was designed to improve the treatment of positive
recursion, which was the main obstacle.  Roughly speaking, all the positive recursion
arcs which could not be eliminated were considered as attachment arcs.  Then, we gave
Shal3 the ability to use symbolic propagation and simple theorem proving methods for
eliminating crucial recursion arcs.  Shal4 is able to recognize some global patterns and
to compile them in simple cases.  We are now facing a new difficulty: improving
global pattern recognition and compiling requires a sophisticated pattern recognizer
and the corresponding compiler.

4.2  The bootstrapping positive feedback

This approach provides us with a positive feedback.  Each time we implement methods
for using new concepts, these methods and concepts automatically are incorporated
into the system's knowledge repository.  For instance, we can now speak of sets and
operations on sets: the system has some knowledge about it.  This is a feedback on the
expressiveness of the language.  There is another feedback: once a new concept is
defined, one can use it to write again the knowledge base, thus providing us with a
shorter and easier-to-analyse knowledge base.  We are seeking efficiency through
generality.  We hope in the next future that this positive feedback will be very
significant.

4.3  Current results

Besides the other aspects which can only be qualitatively assessed, the efficiency gain
can be quantitatively measured.  The average gain ratio when compared to the initial
inference engine performance is 3.25.  In particular, this is the ratio when Shal4 is run
onto itself.  However, it can be significantly higher when global patterns can be
recognized.

5  Related work

A priori analyzing a knowledge base by means of a meta-knowledge base was already
proposed by Porcheron [1988].  In particular, he proposed to study the recursion arcs
between rules.  The main difference with our work is that he used graph-theoretical
concepts to analyze these two graphs, such as connectivity or simple connectivity.
Instead, we use simple propagation and heuristics in order to get a reasonably efficient
system.  Another major difference is that, though foreseeing it, he did not try to apply
his system to itself.
Parchemal describes in his PdD dissertation [1987] a system, called SEPIAR, for
analyzing how a production system runs.  The way SEPIAR works is very different
from ours, since it does not perform a priori deductions.  However, it could draw



conclusions similar to ours, in particular that a positive recursion hardly ever happens,
or that a particular index on the working memory would be useful for improving
interpretation.
Another meta-level system is Maciste, being designed by Pitrat [1986, 1988].  His
system is far more ambitious than ours.  It was the first system to systematically apply
bootstrapping to knowledge bases.
Other meta-level systems are well-known, such as EURISKO [Lenat, 1983] and SOAR
[Laird, Newell & Rosenbloom, 1987].  However, their goal is very different from
Shal's, since they aim at discovering or learning new knowledge.  Shal does not
discover new concepts, and it learns nothing new.  Instead, it applies meta-knowledge
designed for analyzing knowledge.  We think that Shal lies somewhere in between
simple knowledge processing and learning.

6  Conclusion

We showed in this paper how a knowledge base can understand some key features of
the behavior of a knowledge base.  This can help achieving different knowledge
engineering tasks: compiling and/or improving interpretation, contradiction discovery,
and knowledge acquisition.  As it is a regular knowledge base, our system can take
advantage from this approach, by applying onto itself.  In particular, this makes our
system an indefinitely extendable system.
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