
Meta-Knowledge, Autonomy, and (Artificial) Evolution:
Some Lessons Learnt So Far

Jean-Luc Dormoy
EDF R&D Center

IMA-TIEM
1, avenue du Général De Gaulle
92141 Clamart Cedex, France

Sylvie Kornman
LAFORIA

Paris 6 University
4, place Jussieu

75252 Paris Cedex 05, France

Abstract

We claim in this paper that an extensive use of
meta-mechanisms is a very powerful tool for
building autonomous AI & AL systems. We
support that claim by examples of knowledge-
based systems exhibiting unexpected and partly
autonomous behaviors. They show that
autonomy, as well as viability, could be achieved
in the future by means of meta-mechanisms. In
particular, meta-mechanisms require simpler
mechanisms than multi-agent-like or emergent
mechanisms, though they can achieve more
sophisticated behaviors.
We also present the perspective of bootstrapping
as a basic methodology for building AI & AL
systems. Its motivation is that building AI or AL
systems is probably too difficult a problem to be
tackled by just finding out the right components
and then assembling them. These systems must
go through a sequence of evolutionary steps, and
we must be aware of that fact.
On one-hand, bootstrapping means that any new
component should be made applicable to the
system as a whole - and not only participate to
the system's behavior - in order to help further
extensions. On the other hand, the strategy used
when building a system should not be mainly
concerned by immediate performance, but by
further extensions. This means that new
functions or components should be added to the
system in order to make further extensions
possible or easier. We describe some
experiments in building AI systems according to
this strategy, and its constraints and difficulties.
Indeed, we have no clean theory of bootstrapping
yet, instead mere intuitions. So, these
experiments mainly aim at figuring out how the
design of a sophisticated system through
bootstrapping steps should be conducted. We
think that, eventually, a theory will be required.

1 Introduction

A common view of AL and AI systems architectures is
based on multi-agent architectures. In this view, a set of

non-intelligent small agents interact with each other, and
from this interaction emerges a global behavior. In a
practical way, the physical implementation of the agents
share and act through a common substrate -e.g. data
structures in 'symbolic' multi-agent systems, or numbers
in neural nets- , but they are of a different nature. Their
own substrate, i.e. their physical implementation, does
not intersect the substrate they act on.

The aim of this paper is to discuss the meta view, i.e.
a view where agents can also act on agents. This view is
not new in any way, but we think it can be useful to
reconsider it with respect to refurbished problems
stressed by the AL community, such as autonomy,
viability and evolution. We make various claims, and we
show how they are justified by some examples of
previous AI systems, and by the systems we are building,
namely the Shal and Sade/Meta-Hari systems.

We first claim that meta is powerful. Indeed, a
simple mechanism achieves more when properly used at
the meta-level rather than at the basic level. Acting at the
meta-level means that the components implementing the
mechanism act on the physical implementation of other
components, whereas acting at the basic level means
merely interacting with them. Conversely, the designer
who intends to build a system exhibiting a given
behavior would better choose a meta-level architecture.

Secondly, we re-consider the autonomy and viability
problems with respect to meta-level architectures. In
particular, an operational closure of the system1 can be
achieved by simpler mechanisms in a meta architecture.
Autonomy can be enhanced in meta-level architectures
by the fact that components can be used at any level.
Indeed, from the designer's point of view, this a saving
principle: let components act on components, and you
will need less, because a component can participate to
various functions at various levels. Viability can be
tackled by specific-purpose components, which for
example observe other components, and try to fix
improper behaviors.

Thirdly, we discuss the bootstrapping problem of AI
or AL systems. Bootstrapping has been a long-known
technique for building compilers, for example. It
consists of using an already-existing version of a system
for running a new version. When systems have the
capability of processing themselves, the old version can

1 In the sense of Varela

often be discarded after having been used once. So,
bootstrapping is a design methodology for building
artifacts through a sequence of small steps. Its main
benefit is that one very quickly takes advantage of the
improved functions provided by the intermediate
versions, instead of having to wait for the system to be
completed.

Indeed, we think that bootstrapping usefulness is two-
fold. First, it helps in building an operationally closed
system. This means that the system is not yet fully
autonomous, that it still requires the designer to intervene
in its functioning, but that already built-in components
can be subtituted for the designer's intervention in
solving sub-problems. This is the stage we are in in the
Shal construction. Second, bootstrapping could be used
to improve -from the designer's point of view- an already
autonomous system. It can even be thought of including
'mutation components' in the system, which would help
the designer to change the system. We are not
experimenting this yet.

The bootstrapping perspective is perfectly coherent
with the meta view. Indeed, we try to build components
which participate to their own processing. Besides,
building a system in this way dramatically changes the
content of the components to be implemented, i.e. what
they do. When adding a new component, its function
must be to help to process components, including itself.
So, bootstrapping makes the designer face a new set of
constraints, he is not free to tackle the subproblem he
would like to. Indeed, those constraints turned out to be
so tough in our experiments that they required our main
focus of attention. Eventually, our systems are not
intended to provide any kind of 'external' functionality,
but to be merely able to process themselves. The
bootstrapping methodology we used -how- became a goal
-what- in its own. We describe some aspects of this
work.

Let's say at last, and at least, some words about the
examples provided throughout this paper. First, we felt
free to borrow from famous pieces of work in AI, and to
stress some of their aspects which seemed interesting to
us. This does not mean that their authors share our
views. Second, our examples are knowledge-based
systems. We know the discussion about representation.
Anyway, we think that these systems properly illustrate
our views, though not specific to knowledge-based
systems. Instead, we think that, at this level of
discussion, using knowledge or not is a mere issue of
substrate. Beyond, we also have some ideas about the
previously mentioned discussion, but we do not intend to
argue about them in this paper.

2 Meta is powerful

The Prodigy system is the first example we mention,
which shows that a mechanism can provide a more
powerful behavior when properly used at the meta-level
rather than at the basic level.

Prodigy (Minton & al. 1989) is a workbench
developed at Carnegie-Melone University for
experimenting various kinds of learning in knowledge-
based systems. Among these experiments, Steve Minton
used the Explanation-based Learning (EBL) technique
for learning new control knowledge which helps a
problem-solver to solve a class of problems. Some form
of EBL was already used 15 years ago in planners such
as STRIPS. Since then, EBL has been formalized and
used in various ways. The spirit of EBL is to learn from
a single example and a theory of the domain (knowledge)
some tractable formulations of a generally intractable
target concept. For example, the rules of chess could be
the domain theory, a particular winning chess position
the training example, and the target concept a
formalization of win.

Usually, EBL is used for learning from success. This
means that, when a particular case of the class of
problems is solved, EBL attempts to summarize how this
success has been reached, and to generalize as much as
possible. It produces some kind of macro-operator,
which sums up the generalized version of the actions
performed to reach success in the example, and which
can be used later to directly solve a similar problem. The
main problem in this approach is that the cost of
matching previously learnt macro-operators can
overwhelm the potential improvement they can provide.
This is the cost/utility problem.

One of the innovative features of Prodigy is that,
instead of using EBL at the basic level (i.e., the level of
the problem itself), it is used at the meta-level of the
problem-solver. Prodigy has been provided with a theory
of some important aspects of the problem-solver
behavior, and with target concepts such as success,
failure and goal interaction1. What Prodigy learns by
means of EBL is control rules, i.e. rules which guide the
problem-solver's decisions when attempting to solve a
problem. The experiments conducted by Minton & al.
showed in particular that learning from failure actually
was an effective learning method.

Beyond the intrinsic interest of Prodigy, the point we
wish to emphasize is that the basic technique used in it is
a "slight" modification of an already-known technique.
The main difference is that the EBL mechanism is used
in Prodigy at the meta-level, i.e. the level of the problem-
solver. We think that that is one of the main reasons why
Prodigy succeeded, while its predecessors were stuck by
the cost/utility problem. Moreover, Prodigy can learn
more general knowledge. For example, if a particular
problem mentions the two subgoals Stack x on y and
Stack y on z, then Prodigy will learn (from goal
interaction) and then use the fact that it is better to try to
stack y on z first. This control rule can be used in
various situations, while a macro-operator learnt by EBL

1 A goal interaction occurs in a planning problem
whenever an already-achieved subgoal must be destroyed
for achieving another subgoal.

when applied at the basic level would consist of a more
specific piece of knowledge.

3 Meta in the perspective of autonomous
and viable systems

3.1 Autonomy

The use of components at the meta-level, i.e. acting on
components, makes it simpler to build relatively
autonomous system. We shall give two examples, from
two systems: Shal and Sade/Meta-Hari.

In the Shal system (Dormoy 1990, 1991), which the
first author is currently developing, some components are
used at different levels and so participate to different
functions. For example, we are developping a TMS-like
component1, which function is to undo the deductions
drawn from a fact later considered as non pertinent. The
initial reason why we implemented this component was
that Shal makes heuristic deductions in its various
activities, and they can be found to be incorrect later. So,
these deductions are to be undone. However, Shal also
has a component which aims at discovering errors in a
knowledge-base. Obviously, this error-finding
component is applied to the Shal system itself (including
the error component). It turns out that the error-finding
component knowledge also contains heuristics. So, it
happens that some errors are incorrectly stated by this
component. When the system finds evidence of this, the
TMS component acts on the error component - which
acts on the whole system - to undo its wrong deductions.
In the next future, it might also be possible that the TMS
component undo deductions drawn by the TMS
component (because it also has heuristic knowledge).

This example shows that various functions can be
achieved by a single component, provided that it has the
possibility to apply at various levels. Without
systematically giving components the ability to act on
components, we would have had to design specific
components for each usage of our TMS component. So,
it is clear to us that reaching a relative autonomy is made
easier by using meta capabilities, simply because less
components are required.

Another example is the Sade/Meta-Hari under
developement by the second author (Kornman 1989,
1991). This system is designed to observe a running
knowledge-base, to discover misbehaviors in it, such as
looping or getting stuck, and to repair the knowledge-
base behavior in order to get out from the wrong
situation. This system has the ability to do so in various
situations, but not always. In particular, it can loop or get
stuck. It turns out that, together with the system, a small

1 Indeed, this component has the function of a
conventional TMS, but does not work at all in the same
way.

component for systematically interrupting a knowledge-
base while it is running has been implemented. This
component routinely triggers the observing system,
which attempts to find evidence of a misbehavior, if any.
This interrupting component applies to any running
knowledge-base, in particular to the observing system
when it is running. So, the system also sometimes
“observes itself”. When it is looping or getting stuck, a
copy of itself can analyze the situation, discover the
wrong behavior, and repair it. Obviously, it is possible
that the system at meta-level 2, i.e. the system observing
the system which observes the knowledge-base, go into
looping or getting stuck. Another level of observation is
then added.

It is clear that this meta-tower of mutually observing
systems is not a panacea. Firstly, it is not desirable to
have a high tower: while being observed, a system does
nothing, and so a relatively small amount of time should
be devoted to observing. Secondly, it is possible that the
“whole tower” loop or get stuck: indeed, more and more
levels are added, the upper levels observing the lower
ones, and each level going into wrong behavior2.

However, the experiments being conducted with the
Sade/Meta-Hari system show that it is possible to design
the system so that it avoids complete collapse in most
situations. Roughly speaking, the observing system must
not have too many problems. If so, the meta-observing
system would have much work repairing its lower copy,
and, as its capabilities are the same, it would not be good
enough to do so. Other problems arose, which we shall
just mention here, such that the relationship between
form and content of a component. When we say that a
component acts on a component, we should indeed say
that the content (what it does) of a component acts on the
form (its physical implementation) of a component.
However, for a given content - which is what the
designer aims at when building the component -, there
are various possible forms for implementing it. So, the
content of meta-components acting on components
strongly depends on the form of the components they act
on. In a practical way, a very slight change in the form
of a component can invalidate the meta-components. So,
one of the most challenging problems when building
meta-level architectures is to “tune” the form of
components in order to make it fit with the content of
already-existing components which are to be used at the
meta-level. This is still a “black art”.

The Sade/Meta-Hari system is autonomous is some
sense, and brings autonomy to the knowledge-base it is
applied to. When coupled to a knowledge-base, it makes
it possible to almost always get out from traps and
deadends - even traps caused by the implementation of
the procedural inference engine which runs the
knowledge-bases. So, there are two lessons learnt by
these experiments. First, autonomy is not reached by a
knowledge base - or any other kind of system - per se,

2 From a logical standpoint, deciding whether a program
loops is an undecidable problem.

even if this was intended by the knowledge base
designer. It is strongly enhanced by another component
acting at the meta-level, the Sade/Meta-Hari system.
Secondly, the observing component also has the
capability to apply onto itself, which still enhances the
behavior of the whole system.

3.2 Viability

Viability looks like a very difficult problem, even more
difficult than autonomy. In the (short) history of meta-
level systems in AI, the systems which exhibited a
relatively autonomous behavior also exhibited a very
poor ability to avoid quick collapsing. We shall first give
two examples which demonstrate this problem, then an
example which shows how unstability could be fought.

The AM system (Lenat 1982), designed by Doug
Lenat in the 70s, was an “artificial mathematician”. It
had knowledge and heuristics to build and consider
interesting mathematical objects, and to conjecture
interesting theorems about them. It proved nothing, and
the knowledge in mathematics it started from was close
to nil. Simply, it exhibited the “inspired behavior” of a
mathematician while discovering new mathematics. This
system had stunning results. For example, it discovered
basic arithmetics, including integers, addition and
multiplication, prime numbers, and unique factorization
of integers in primes.

However, according to Lenat, AM did not produce
interesting results after running two hours. It had given
anything it could, and was lost in overwhelming
uninteresting objects and conjectures.

Lenat interpreted this problem in the following way:
AM had the “right heuristics” to deal with the simple
objects it started with, but once more sophisticated
objects were introduced (arithmetics), these heuristics
were of no use any longer. AM lacked the ability to
synthesize new heuristics better fitting its new domains
of interest.

This was the main motivation for Lenat building his
next system, Eurisko (Lenat 1983). Eurisko had
heuristics to deal with heuristics, in particular heuristics
for changing or discovering new heuristics. The results
of Eurisko have also been quite impressive. It managed
to win a naval battle game championship, by being
trained to learn good heuristics specific to this game. It
also reproduced the results of AM, and others in other
domains (e.g. VLSI design). In particular, Lenat showed
that Eurisko had discovered a new meta-heuristic, i.e. a
heuristic for discovering heuristics, which was better than
the heuristic which gave birth to it. This was an example
that the system could actually enhance itself.

However, it is not clear how Lenat could manage to
keep his system relatively stable. Obviously, a system
which can radically change itself has many opportunities
to produce lethal components. This actually happened in
Eurisko. For example, a meta-heuristic had been
synthesized, which stated that nothing in the system was
interesting. This “killing” component fortunately turned

out to be suicidal, i.e., while killing everything, it killed
itself. But this was just chance, and it seems reasonable
that more subtle wrong components have been generated.
It seems that Lenat managed this problem by often
intervening in the Eurisko process of discovery (he says
that Eurisko’s successes are 60% Eurisko’s and 40%
Lenat’s). So Eurisko was not viable by itself, it required
Lenat’s help. There was something lacking in Eurisko,
but this thing is obviously sophisticated.

We shall now show how the viability problem could
be tackled by using a rather different example. The Shal
system we are developping makes a systematic use of its
knowledge for processing itself and helping its own
design process. A very serious problem when building
such a sophisticated system is errors. This is true for any
system, but systems based on a meta-level architecture
can exhibit some new kind of errors, much more difficult
to identify and fix than in other systems. When a
component is faulty, and when this component applies to
another component, the fault can be visible only a long
time after. For example, if a component MC1 -used at
the meta-level - makes deductions on a component C
which helps another component MC2 to compile C, and
if an error occurs in MC1, then the error can be visible
only when using the compiled version of C. But, in turn,
component MC1 is not necessary faulty, simply we used
a compiled version of it, wherein an error has been
introduced by the compiling components. So, tracking
down an error requires not only to observe the behavior
of the interacting components, but also to navigate
through the meta-levels of components acting on
components.

The simplest idea for tackling this problem is to
design a special component, the aim of which is to find
errors in components. In a practical way, this requires
the discipline which consists, whenever the designer (us)
finds out a new kind of error, of providing the system
with sufficient knowledge to discover similar errors on
its own the next time they occur. We have in Shal an
ever-growing error-finding component, which size now
adds up to as much as one-third of the whole system.

It is rather difficult to quantitatively assess the gain of
this error component. However, we experienced that it
does discover errors when we modify Shal, and our past
experience convinces us that it helps to save days of
work.

This error component does not exactly respond to the
viability problem as usually stated, in the sense that it
function is not to modify the behavior of the system
when something lethal is coming up, but to prevent the
system from being so wrong that it would not “survive”
more than a few minutes. However, if we think of the
design process of Shal as some kind of ontogenic
process, the error component prevents from generating
wrong components.

Another example is the already-mentioned
Sade/Meta-Hari system. While the error component of
Shal could only statically analyze a system, Sade/Meta-
Hari dynamically intervenes in the behavior of the

system. So, this system provides a partial answer to the
viability problem as generally understood.

Both systems show, though still in a partial way, that
the use of components at the meta-level can help to
tackle the viability problem. Moreover, this problem can
be explicitely tackled. The fact that a system’s behavior
is viable does not only emerge from its architecture,
instead there are some specific components which help it
to do so. The problem is to discover some relatively
general mechanisms which ensure that a system will not
collapse.

4 Bootstrapping

4.1 Methodologies for building AI & AL systems

In Nature, there are several degrees of change. Usually,
AL people emphasize the adaptive aspect of autonomous
systems. This refers to the way "grown-up" animals or
"completed" artificial systems behave. If we refer now to
Artificial Life or Artificial Intelligence systems, it is
clear that these systems must have a degree of adaptivity,
but an even more difficult issue is to know how to build
them - adaptive or not. In Nature, this is done by
reproduction, and evolution, which are very different
degrees of change.

A consistent view in AI is the "explosive kernel"
vision. Instead of building a huge system by hand, we
should try to build some very special components, which
should be able to improve themselves just by running, so
providing us with a new, better system. These primordial
components make up the kernel, and its intention is to be
explosive, i.e. to expand and improve itself in an infinite
loop.

A serious experiment in this way was Lenat's Eurisko
system. Eurisko was provided with meta-heuristics,
more precisely heuristics which aimed at discovering
new heuristics. Eurisko exhibited one case of a group of
meta-heuristics which discovered new, better meta-
heuristics. So, this first experiment was a success in
showing that it is possible to build a system which
intrinsically improves itself, not only adapts itself to
external conditions. However, as visible at once, this
perspective is extremely ambitious, and Eurisko did not
go further along this line.

Another view is the bootstrapping vision. Indeed, we
are seeking to build artificial systems, i.e. built by a
designer, though life has appeared without any. Now,
building AL and AI systems is so difficult a task that it is
probably hopeless to do it in one single step. So, the idea
is to use what is already built as soon as it is available
while building the system. This implies that the main
function of components should not be to achieve an
'external' function, but to participate to the whole running
and changing of the system.

This is no new idea. It has been used for long in
computer science, for building compilers or interpreters
(partial evaluation) for example. It has also been used in
some AI systems, such as TEIREISIAS (Davis 1982).

TEIREISIAS, which was a system put upon the MYCIN
expert system, was aimed at explaining and controlling
MYCIN's behavior, and at helping the expert to acquire
new knowledge. The TEIREISIAS component dealing
with acquiring new objects, attributes and values had
been built by Randall Davis by means of itself: as soon
as some primitive concepts had been wired-in, the object,
attribute and value concepts themselves were acquired by
means of TEIREISIAS.

Jacques Pitrat has put the idea forward in his
MACISTE system (Pitrat 1986, 1990). The main -and
only- aim of this system is to be able to process itself.
Roughly speaking, the system is a rule-based system. It
has a very important component, which is a rule
compiler. One of the main goal of the MACISTE
experiments was to show that an AI system could
produce all the programs it would need -not a single line
of code should be written by the human designer. So, the
problem is to build a rule compiler which can compile
itself. In a practical way, this is no easy task.

Starting from Jacques Pitrat's ideas, we are currently
building a system, named Shal, which is also intended to
fully process itself. Nevertheless, there are some
differencies between Shal and MACISTE, due to
different starting points. We shall not discuss them,
neither shall we discuss the details of these systems.
Instead, we shall describe some lessons learnt so far in
building an operationally closed system through
bootstrapping.

4.2 Constraints and problems in bootstrapping

4.2.1 The bootstrapping tunnel: make steps small

Gain

dE
ffo

rt
dG

ai
n

Figure 1: The bootstrapping tunnel

Our first attempt consisted of directly building a rule
compiler written in rules. This work had been done with
Jean-Yves Lucas in 1988-89 (Lucas & Dormoy 1990).
We started from his SIREN system, which was a system
able to synthesize programs which solved constraint
satisfaction problems from their mere specification. This
system had 400 rules, and was theoretically able to
compile its rules. However, the experiments showed that
rules compiled by this compiler were less efficient than
when interpreted by the human-encoded inference
engine, especially when run on large working memories.
There was some knowledge implicitely present in the

inference engine which was not stated within the rules.
So, we considered adding rules. We assessed that the
system's rules would add up to 800. However, when
compiling rules R, the compiling rules work on a
representation of R in the working memory. So, when
represented, 800 rules make up a large working memory,
which was just the case when our first compiler was
inefficient. So, we got stuck.

The reason why this first attempt was a failure was
that we tried to achieve a sort of operationally closed
system through a single step. This is not a good idea, just
because we could not take advantage of an already-
existing system. This is summarized in the diagram
below. The area under the lines respectively represent
the effort (e.g. human, or CPU) required by achieving a
given function when completing the system through a
single step (grey), or through a sequence of small steps
(dark). The reason why the second alternative is better is
that each intermediate system takes advantage of the
functionalities provided by the previous ones.

4.2.2 The necessity to solve various problems at the
same time

After this first attempt, we chose another path. Instead of
trying to reach a rule compiler very quickly, we added
some knowledge for discovering the behavior of a rule
base. The idea was that this would provide better
compilers in the long term, and at the same time that
'partial' conclusions drawn by this component could be
immediately useful for improving the rules behavior and
efficiency. This is what actually happened. Though not
yet able to compile rules, Shal takes advantage from what
is deduced by Shal to improve its behavior.

Then, other problems happened. The Shal knowledge
base was getting ever larger, and we had many problems
in simply managing this large ensemble. First, a better
control was required for the system properly using its
knowledge. We designed a language and some
knowledge for stating, using, and 'criticizing' control.
Second, from the beginning, we had been using semantic
constraints, which provided the system with knowledge
about the kind of working memory to be used. It turned
out that, as the system grew larger, it was not possible to
provide it with this kind of knowledge by hand. So,
some components were added, which make it possible to
discover this knowledge automatically.

While adding these components, new 'micro-
languages' had appeared, wherein we -or the system-
stated semantic constraints or control knowledge. All
this knowledge was represented within the working
memory, in a very painful-to-read syntax. So, we
designed a component for translating simple languages
into each other from simple specifications.

Secondly, more and more knowledge was of a
heuristic nature. This means that it turns to be somewhat
'irrational', and that at least some means for checking and
correcting them was needed. This is why we
implemented a 'TMS-like' component -though very

different in nature from what has been done in AI about
this topic.

Thirdly, the most important obstacle became errors.
There are various kinds of errors. First, there are the
errors in implementing the system. Second, when using
heuristic knowledge, the system can go into 'wronger and
wronger' deductions, and so collapse or enter any kind of
lethal behavior. For both reasons, the largest component
in our system is now an error-finding-and-fixing
component. It adds up now to one third of the whole
system.

Eventually, this very short chronology of our system
development shows that it is not possible to solve a
problem independently from others. One must tackle 'all'
the problems at the same time. Seeking autonomy and
viability, we are now quite far away from mere rule
compiling.

4.2.3 The necessity to solve problems in a bad way

At the same time, we have had a hard time to get rid of
old psychological and cultutal habits. In particular, when
a scientist faces a problem, he tries to solve it in-depth.
This does not work here. Indeed, if for a given
subproblem P, we implement an excellent solution in a
component C, we can expect C to be large. As C must be
processed by other components, these components must
be 'expert enough' to cope with that large one. In the first
stages of our system development, this is not possible.
So, components must remain relatively small and have a
form as simple as possible.

4.3.4 Dealing with the "real-world" I: the fixed point
problem

Adding a component is two-fold. One first wants to add
a new functionality; this is its content, i.e. what the
component is supposed to do. Now, this component
must be processable by already-existing components.
Indeed, when acting at the meta-level, components act
upon the form of components. There is no simple
relationship between content and form of a component.
Even a slight change in the 'language' where components
are expressed -or, say, their physical substrate- can
dramatically change the form of a component exhibiting
a given behavior.

So, the designer is not free to add components. When
adding a new component C1, with an intended content,
there must be somewhere what is required to process the
form of C1. If this does not exist yet, one must add C2
for processing C1. In turn, one might need C3 for
processing C2, and so forth. At the end, we must have in
hand components C1, C2,… ,Cn, which content can
process their form. This is some kind of 'fixed point'
property, or 'local operational closure'. In a practical
way, the size of C1 to Cn must not be so large as to make
them unprocessable by the already-existing system (see
Subsection The Bootstrapping Problem).

We have no answer to this problem, but vague
intuitions. Indeed, this is the main problem we are
fighting with in building Shal.

4.2.5 Dealing with the "real-world" II: internal vs.
external worlds

In some sense, the Shal and Sade/Meta-Hari systems are
perfectly egocentric: they just observe themselves,
compile themselves, process themselves, etc. In
particular, they are not confronted with the real world.
Their 'real world' is themselves.

Indeed, this is not a side-effect of our approach, but
one of its foundations. As we mentioned, designing
components, the content of which is able to process their
form, is a difficult task. So, adding components for
making the system able to achieve an intended behavior
in the 'real world', let alone 'surviving' in it, is out of
reach of our systems in their current stage of
development.

We think that this is not a problem, on the contrary
we think that this might be a necessary condition for
long-term research. Our main goal is not performance, it
is 'artificial evolution'. As we said, we think that
bootstrapping, or 'artificial evolution', could be an
efficient methodology for building working AL & AI
systems. So, trying to reach a quick solution when
building an autonomous creature might be a deadend in
the long term. We do not mean that there is nothing to
learn from these experiments. We are on a different
research path. We are seeking new design principles for
AL & AI systems. A consequence of our approach is
that our systems will go on surviving in 'protected
worlds' for a long time.

5 Conclusion

We showed in this paper that meta-level architectures
make simple mechanisms more efficient when used at the
meta-level. We also showed that autonomy and viability
can be enhanced in the meta approach. We then
introduced the bootstrapping, or 'artificial evolution'
approach, which aims at building a system by means of
its earlier versions. We described some conclusions
learnt so far from our experiments in building the Shal
and Sade/Meta-Hari systems. What we omitted to
mention is that we have no clean theory yet, but we think
that such a theory will be necessary in the future.

References

Davis, Randall, and Doug Lenat. 1982. Knowledge-
based systems in Artificial Intelligence. Mc Graw-
Hill, 1982.

Dormoy, Jean-Luc. 1990. Behavior and function of a
knowledge-base. Cognitiva'90, November 1990,
Madrid, Spain.

Dormoy Jean-Luc. 1991. Knowledge for compiling
knowledge: the Shal system. To be published in the
Revue de l'Intelligence Artificielle.

Kornman, Sylvie. 1989. Automatic introspection in a
declarative knowledge-base system. Congrès
systémique, Lausanne, Switzerland.

Kornman, Sylvie. 1991. Systems under surveillance.
IASTED 1991.

Lenat & Davis. 1982. See Davis, 1982.
Lenat, Douglas B. 1983. EURISKO: A program that

learns new heuristics and domain concepts. Artificial
Intelligence 21 (1983), pp. 61-98.

Lucas J-Y, and J-L Dormoy. 1990. Jean-Yves Lucas,
Jean-Luc Dormoy. Shal : un compilateur de règles
écrit en règles qui s'applique à lui-même (A rule
compiler which applies to itself). Convention IA'90,
January 1990, Paris, France.

Maes, Pattie, and Daniele Nardi, Eds. 1988. Meta-level
architectures and reflection. North-Holland.

Minton, Steven, Jaime G. Carbonell, Craig A. Knoblock,
Daniel R. Kuokka, Oren Etzioni, and Yolanda Gil.
1989. Explanation-based learning: a problem-
solving perspective. AI Journal Vol. 40, Numbers 1-
3, September 1989.

Pitrat, Jacques. 1986. Le problème du bootstrap. (The
bootstrapping problem). Internal report "Cahiers du
Laforia".

Pitrat, Jacques. 1990. Métaconnaissance.
(Metaknowledge). Hermès, Paris.

Varela, Francisco J. 1989. Autonomie et connaissance,
essai sur le vivant. Seuil, Paris.

